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The Challenges Facing Diesel Reforming Catalyst 
Development

• Cost
- Costly Rh usage 

• Durability
- Metal vaporization
- Metal agglomeration 

- Support stability

- Sulfur poisoning
- Coke formation 

Catalyst activity and cost were rated as the top program need by
SECA Vertical Team 
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Fuel Injection and
Mixing System

Diesel Fuel

ExhaustAir

Reformate

Autothermal reformer

The Challenges Facing Fuel Mixing

• Diesel fuel cannot be 
evaporated

• Incomplete mixing 
creates “hot spots” on 
the catalyst and leads to 
coke formation

• Pre-heating the air 
appears to prevent pre-
ignition
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Diesel Reforming Catalyst 
Development
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Theory: On Oxide Ion Conducting Substrates
Metals Can React with Vacancies

• Doping ceria with a trivalent rare earth element, such as Gd
or Sm, introduces oxide ion vacancies.

• Metals on the surface can interact with the oxide ion 
vacancies.
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Binding EnergyEXAFS shows Pt on a gadolinium-doped ceria (CGO) is 
highly dispersed 100% Pt(II) – 72.4, 75.7 eV, XPS shows Pt is 

oxidized
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Approach: Development of Perovskite Based 
Catalyst

• The Perovskite Catalyst…
- Has defect chemistry

- Consists of low cost material

- Stable under high temperature

- Stable in strong redox environment
- Has exchangeable A & B site for 

activity improvement 

- Has lower adsorption energy for H2S 
than metals

A 
B Perovskite ABO3 Structure
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ATR Catalytic Study: Experimental Conditions

• Fuel
- Dodecane C12H26

- Dodecane/Dibenzothiophene mixture (50 ppm S)
• Microreactor

- Catalyst loading:  ~ 0.5 to 1 gram catalyst diluted in inert alumina.

- Temperature:  600 °C to 725 °C
- Preheating: 200 °C
- GC analysis for reformate product 

• Reforming Input Mixture
- ATR: O2/C = 0.3 ~0.5, H2O/C = 1 ~ 3 

• Space Velocity
- Fuel Flow Rate = 2.8x10-3 gfuel/gCat•sec
- GHSV = 50 K ~ 100 K hr-1
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Diesel ATR Catalyst Development – H2 Yield and COx
Selectivity of Some Representative Samples
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ATR input
O2/C = 0.5
H2O/C = 2

C12H26 + 6O2 + 12H2O = 12CO2 + 25H2

Definition:
H2 yield = 

Mole H2 produced/Mole of 
input fuel

COx selectivity =

Mole (CO + CO2) in 
reformate/Mole C in fuel
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Diesel ATR Catalyst Development – H2 Yield as 
Function of O2/C and H2O/C
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The hydrogen yield as the function of O2/C during the 
reforming over La0.8Sr0.2Cr0.95Ru0.05O3,  H2O/C = 1.0

The hydrogen yield as the function of H2O/C during 
the reforming over La0.8Sr0.2Cr0.95Ru0.05O3, O2/C = 0.5 

Hydrogen yield and reforming efficiency can be affected by 
oxygen and steam contents 
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Diesel ATR Catalyst Development – Sulfur Tolerance 
Experiment
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Sulfur contaminated fuel (DBT with 50 ppm S) results in catalyst
deactivation. Catalyst re-activates after S is removed from fuel. 

Fuel switching capability in microreactor allows 
the study of S impact under identical conditions

S-fuel starts S-fuel ends

Reforming efficiency decreases when fuel is 
replaced by DBT/dodecane mixture.
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Diesel ATR Catalyst Development – Sulfur Impact on 
COx Selectivity & Aromatics Formation
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S-fuel starts S-fuel ends

COx selectivity drops as the impact of sulfur from 
DBT in the input mixture…

… while benzene and toluene production 
increased significantly

Benzene

Toluene

Sulfur slows down the conversion of hydrocarbons to COx and 
enhances the production of aromatics 
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Diesel ATR Catalyst Development – Change of 
Reforming Efficiency Before & After S-Poisoning
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Fuel reforming efficiency to H2 + CO = {ct,H2∆Hc,H2 + ct,CO∆Hc,CO}/ct,fuel∆Hc,fuel

Ct,i = Molar flow rate of I,  ∆Hc,i = Heat of combustion of i
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Diesel ATR Catalyst Development – Advanced 
Catalyst Characterization

Raw XANES & EXAFS spectrum
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Diesel ATR Catalyst Development – Preliminary 
EXAFS & XANES Studies

• Initiated Ru K-edge EXAFS and XANES studies for B-site doped 
perovskites using Advanced Photon Source at Argonne.

0.04

0.08

0.12

0.16

0 1.5 3 4.5 6
F

T
(χ

(k
)*

k
3

)

R [Å]

0.0

0.25

0.5

0.75

1.0

0.0

0 100 200 3000-100

N
o
rm

. 
a
b
so

rp
ti
o
n
 [

a
.u

.]

photoelectron energy (E-E0 ) [eV]

XANES comparison between LaCr0.95Ru0.05O3
& LaAl0.95Ru0.05O3

Radial distribution functions obtained from 
EXAFS of LaCr0.95Ru0.05O3 & LaAl0.95Ru0.05O3

Doped Ru in both perovskite is mostly likely 
in +3 oxidation state when prepared.

Ru-O and Ru-La shell structure is tentatively 
assigned. Small crystallite in chromite leads 

to less oxygen coordination.
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Diesel Fuel Mixing Study
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Approach to Mixing Challenge

• Joint effort between ANL and International Truck and 
Engine Corporation (ITEC)

- ITEC will provide diesel-fuel injectors and fuel-
injection control system

- ANL will establish a test facility, develop a 
fuel/exhaust-gas mixing system, and conduct tests to 
evaluate the ANL autothermal reforming process. 
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Fuel-air-steam Mixing Facility
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• Pulsed injection with pulse rate of

10 ~ 70 Hz (500 ~ 4000 rpm for 4-cylinder engine)

• Injection duration

Below 1 ms at idle to 20 ms at high load

• Injection nozzles

6 holes around

• Fuel injection rate
Peak Torque: 105 mm3/stroke at 240 bar and 600 rpm

Idle Single Shot 9.2 mm3/stroke at 45 bar and 600 rpm

ITEC Diesel Fuel Injector
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Fuel Injection Test Chamber
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Test Matrix 

• Test variables
- Exhaust-gas-fuel ratio (O/C : 0.4, Steam/C : 1.0)
- Exhaust-gas temperature (300 deg. C)

- Exhaust-gas water content (10%)

- Mixing configuration

• Proposed measurements
- Flow rates (exhaust gas and fuel)
- Temperatures (fuel, exhaust-gas, and mixing region)

- Fuel mist characterization

- Carbon deposit 

- Humidity

- Pressure
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Summary

• Perovskite catalysts show good catalytic activity for 
reforming dodecane and are relatively tolerant to 
sulfur

• A test facility to address fuel mixing issues will soon 
be operational
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